TNF inhibits production of stromal cell-derived factor 1 by bone stromal cells and increases osteoclast precursor mobilization from bone marrow to peripheral blood
نویسندگان
چکیده
INTRODUCTION The objective of the present study was to investigate the role of the stromal cell-derived factor 1 (SDF-1)/CXCR4 axis in TNF-induced mobilization of osteoclast precursors (OCPs) from bone marrow. METHODS OCPs were generated from bone marrow cells of TNF-transgenic mice or wild-type mice treated with TNF or PBS. The percentage of CD11b+/Gr-1-/lo OCPs was assessed by fluorescence-activated cell sorting. OCP migration to the SDF-1 gradient and the osteoclast forming potency were assessed in chemotaxis/osteoclastogenic assays. SDF-1 expression was assessed by real-time RT-PCR, ELISA and immunostaining in primary bone marrow stromal cells, in the ST2 bone marrow stromal cell line, and in bones from TNF-injected mice. RESULTS OCPs generated in vitro from wild-type mice migrated to SDF-1 gradients and subsequently gave rise to osteoclasts in response to RANKL and macrophage colony-stimulating factor. TNF reduced SDF-1 expression by ST2 cells. Bone marrow stromal cells from TNF-transgenic mice produced low levels of SDF-1. TNF treatment of wild-type mice decreased the SDF-1 concentration in bone marrow extracts and decreased the SDF-1 immunostaining of bone marrow stromal cells, and it also increased the circulating OCP numbers. The percentage of bone marrow CXCR4+ OCPs was similar in TNF-transgenic mice and wild-type littermates and in TNF-treated and PBS-treated wild-type mice. CONCLUSION Systemically elevated TNF levels inhibit bone marrow stromal cell production of SDF-1 and increase the release of bone marrow OCPs to the peripheral blood. Disruption of the SDF-1/CXCR4 axis by TNF may play an important role in mediating OCP mobilization from the bone marrow cavity in chronic inflammatory arthritis.
منابع مشابه
Advances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملبررسی اثر آگونیست -آدرنرژیکی ایزوپروترنول بر بیان miR-886-3p و miR-23a در سلولهای بنیادی مزانشیمی مغز استخوان انسان
Background and Objective: Mobilization of Hematopoietic Stem Cells (HSCs) for transplantation and the importance of -adrenergic signals in induction of this process have been well investigated. However, little is known about the role of -adrenergic signals in mobilization of HSCs and factors influenced by these signals. The Chemokine Stromal Derived Factor -1 (SDF-1) which is expressed by hum...
متن کاملComparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat
Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...
متن کاملCFU-GM Like Colonies Derived from Embryonic Stem Cells Cultured on the Bone Marrow Stromal Cells
The aim of this study was to isolate mouse embryonic stem cells from late blastocyst stage embryos and to use them as a model system for the study of hematopoietic induction outside the embryo by coculturing of embryonic stem cells with bone marrow stromal cells. Blastocyst stage embryos from pregnant NMRI mice were obtained and cultured for 1-2 days in DMEM medium. The inner cell masses formed...
متن کاملBone Marrow Stromal Cell Transdifferentiation into Oligodendrocyte-Like Cells Using Triiodothyronine as a Inducer with Expression of Platelet-Derived Growth Factor α as a Maturity Marker
Background: The present study investigated the functional maturity of oligodendrocyte derived from rat bone marrow stromal cells (BMSC). Methods: The BMSC were isolated from female Sprague-Dawley rats and evaluated for different markers, such as fibronectin, CD106, CD90, Oct-4 and CD45. Transdifferentiation of OLC from BMSC was obtained by exposing the BMSC to DMSO and 1 µM all-trans-retinoic a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arthritis Research & Therapy
دوره 10 شماره
صفحات -
تاریخ انتشار 2008